
Automatic web service testing from WSDL
descriptions

Sébastien Salva
LIMOS - UMR CNRS 6158

Université d’Auvergne, Campus des Cézeaux,
Aubière, France

Email: salva@iut.u-clermont1.fr

Antoine Rollet
LABRI - UMR CNRS 5800

Université de Bordeaux, Talence cedex, France
Email: rollet@labri.fr

Abstract—Web Services fall under the so-called emerg-
ing technologies category and are getting more and more
used for Internet applications or business transactions.
Currently, there is an important need for validation tech-
niques of web service based architectures. Web services,
that are currently proposed into UDDI registries, are not
always tested. And for most of them, no specification
is provided. So, we propose in this paper, a testing
method which can generate test cases only from WSDL
descriptions. This method is able to check the following
aspects: operation existence, exception management, and
session management. We express how to generate test
cases and we describe a testing framework, composed of
a web service tester, which executes test cases and gives
the final test verdict.

Key-words: conformance testing, web services, excep-
tion management, session management

I. INTRODUCTION

SOA (Service Oriented Architecture) is emerging
as the standard paradigm to develop business appli-
cations over Internet, like Business to Business (B2B)
and Business to Consumer (B2C) applications which
involve the transaction of goods or services. Such
applications are mainly based on web service inter-
actions. Web services can be seen as components or
objects whose methods, called operations, can be called
over a network like Internet. A web service standard,
composed of profiles, has been proposed by the WS-
I consortium to promote web service interoperability.
Especially, the WS-I basic profile gathers the SOAP
protocol, which models how invoking a web service
with XML messages, and the WSDL language, which
is used to describe web service interfaces.

The web service paradigm is now well established
in companies for developing business applications like
banking systems, for externalizing functional code in
a standardized way, for statistics, or for new web
site generation, composed of dynamic services. These
companies foremost want to use trustable web services,
so process improvement approaches, like the CMMI
(Capability Maturity Model Integration) are usually
followed. Especially, the testing activity is a key step
to obtain reliable and trustable web services.

However, testing web services brings new challeng-
ing issues, especially when we consider the WS-I
profiles. Indeed, web services must be invoked by using

SOAP messages. And these invocations are build by
using WSDL descriptions. As a consequence, every
event which is usually directly observable, like a clas-
sical response or a failure, may be translated (or not)
according the WSDL descriptions and spread to the
client over SOAP. For example, exceptions, in object
oriented programming, are not directly observed but
need to be translated into SOAP faults.

This paper proposes a method to test automatically
the web service conformance from WSDL descrip-
tions. We consider not having any specification of the
web service to test, but a WSDL file which describes
the web service interface. Without specification, a
classical conformance testing method which constructs
test cases from a specification, cannot be used. As a
consequence, our proposal tests several web services
properties. First, it checks if every operation described
in the WSDL file exists and handles the correct value
types. Then, our method tests the exception manage-
ment: the WS-I basic profile indicates that exceptions
are correctly managed when each raised exception
produces a SOAP fault which is sent to the client.
The testing method constructs test cases trying to force
the web service to raise exceptions and checks if
SOAP faults are sent. Finally, our method tests session
management: sessions are introduced when different
operations are interrelated. A good example would be
banking applications where you log into the system,
withdraw money, and log out. During the session
time, data are stored by the web service. The method
constructs test cases for setting specific data in the web
service session and then for retrieving session data in
order to check if the data read and written in the session
are identical.

This paper is structured as follows: section II pro-
vides an overview of the web service paradigm and
on some related works about web service testing. In
section III we give our motivations and a general
description of our approach. section IV describes the
testing method: we detail how are generated the test
cases and propose a testing framework. Finally, section
V gives some perspectives and conclusions.

II. WEB SERVICE OVERVIEW

A. Web service

Web services are "self contained, self-describing
modular applications that can be published, located,
and invoked across the web" [Tid00]. To ensure and
improve web service interoperability, the WS-I organi-
zation has proposed profiles, and especially the WS-I
basic profile [org06], composed of four major axes:
• the web service description models how to invoke

a service set, called enpoints, and defines their in-
terfaces and their parameter/response types. This
description, called WSDL (Web Services Descrip-
tion Language) file [Con01], shows how messages
must be structured by describing the complex
types used within. WSDL is often used in com-
bination with SOAP.

• the definition and the construction of XML mes-
sages, based on the Simple Object Access Pro-
tocol (SOAP) [Con03]. SOAP is used to invoke
service operations (object methods) over a net-
work by serializing/deserializing data (parameter
operation and responses). SOAP takes place over
different transport layers: HTTP is which mainly
used for synchronous web service calls, or SMTP
which is often used for asynchronous calls.

• the discovery of the service in UDDI reg-
istries. Web service descriptions are gathered into
UDDI (Universal Description, Discovery Integra-
tion [Spe02]) registries, which can be consulted
manually or automatically by using dedicated
APIs to find dynamically specific web services.

• the service security, which is obtained by using
the HTTPS protocol or XML encryption.

In this paper, we consider black box web services,
from which we can only observe SOAP messages.
Other messages, as database connections and the web
service internal code are unknown. The only available
details are the web service interfaces, given in WSDL
files. So, the web service definition, given bellow,
describes the available operations, the parameter and
response types. We also use the notion of SOAP fault.
As defined in the SOAP v1.2 protocol [Con03], a
SOAP fault is used to warn the client that an error
has occurred. A SOAP fault is composed of a fault
code, of a message, of a cause, and of XML elements
gathering the parameters and more details about the
error. Typically, a SOAP fault is obtained, in object-
oriented programming, after the raise of an exception
by the web service. SOAP faults are not described in
WSDL files.

Definition II.1 A web service WS is a compo-
nent which can be called with a set of oper-
ations OP = {op1, ..., opk}, with opi defined
by (resp1, ..., respn) = opi(param1, ..., paramm),
where (param1, ..., paramm) is the parameter type list
and (resp1, ..., respn) is the response type list.

For an operation op, we define P (op)
the set of parameter lists that op can
handle, P (op) = {(p1, ..., pm) |
pi is a value whose the type is parami} ∪ {ε}. ε
models an empty parameter (or no parameter).
The set of response lists, denoted R(op),
is expressed with R(op) = {(r1, ..., rn) |
rj is a value whose the type is respj} ∪ {r |
r is a SOAP fault} ∪ {ε}.

The operation op corresponds to a Relation op :
P (op) → R(op). We denote an invocation of this op-
eration with r = op(p) with r ∈ R(op) and p ∈ P (op).

Note that some operations may be called without
parameters and/or do not return any response. With or
without parameter, an operation is always called with
a SOAP message. However, when no response must be
given to the client, no SOAP message is received.

The parameter types are simple (integer, float,
String...) or complex (trees, tabular, objects composed
of simple and complex types...) and each one is either
finite (integer...) or infinite (String...). The response
types are either simple, or complex or may be a SOAP
fault. We consider, in this paper, that it does not exist
any relation between the parameter or response types.

Web service interactions may be specified with
some languages like UML or BPEL. A web service
example is illustrated in figure 1 with two UML
sequence diagrams. This one has four available op-
erations: "getPerson" which returns a Person object by
giving a "String", the operation "divide" which returns
the integer result of a division and two setter/getter
operations "set-PersonName" and "get-PersonName".
The WSDL description of the "getPerson" operation
is given in figure 3. This one provides the exchanged
message format. For a request, the message is com-
posed of two elements "getPerson" and a "String".
The response message is composed of two elements
"getPersonResponse" and a Person objet. The Java
code of the "getPerson" operation (figure 2), shows that
two exceptions can be raised (ClassNotFoundEception
and SQLException), so two different SOAP faults can
be received after a "getPerson" invocation.

B. Related work on web service testing

Some papers on web service testing have been
proposed in [GFTdlR06], [TFM05], [DYZ06], [OX04],
[BDTC05], [BFPT06], [BP05], [MX06]. Some of them
consider distributed systems, where components are
web services. System specifications, often expressed by
the UML or the BPEL languages describe the global
system functioning by showing the possible interac-
tions between the services. In [GFTdlR06], the BPEL
specification is translated into the PROMELA language
in order to be used by the SPIN model checking
tool. In [DYZ06], the authors use BPEL specifications,
describing web service compositions. Specification are
translated into Petri nets, then classical Petri net tools
are used to study verification, testing coverage and test

2

i n t

d iv ide (in t , i n t)

c l i e n t S e r v i c e

c l i e n t S e r v i c e

P e r s o n p

g e t P e r s o n (S t r i n g)

P e r s o n

+ g e t _ n a m e () : S t r i n g

+ g e t _ l o c a t i o n () : S t r i n g

+ g e t _ a g e () : i n t

P e r s o n

g e t - P e r s o n N a m e ()

c l i e n t S e r v i c e

c l i e n t S e r v i c e

S t r i n g

s e t - P e r s o n N a m e (S t r i n g)

Fig. 1. Web service UML specification

Person getPerson(String name) {
try{

p=new Persistent_Layer();
Person pers=p.getperson(name);
}

catch (ClassNotFoundException e)
{throw new RemoteException("no
Database driver found");}

catch (SQLException e)
{throw new RemoteException("SQL
error");}

return pers;

Fig. 2. The "getPerson" operation code

case generation. In [TFM05], the system is represented
by a Task Precedence Graph and the behavior of
the composed components is represented by a Timed
Labeled Transition System. Test cases are generated
from these graphs and are executed by using a specific
framework over SOAP.

Other works, about conformance, robustness and in-
teroperability tests, focus on web services seen as black
boxes. In [OX04], web service robustness is tested
by performing mutations on the request messages and
by analyzing the obtained responses. In [FTdV06],

<types> <schema>
<element name="Person">
...
</element>
<element name="getPerson">
<complexType>
<sequence>

<element name="x" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getPersonResponse">
<complexType>
<sequence>

<element name="y" type="Person"/>
</sequence>
</complexType>
</element>
</element>

</schema> </types> <message name=
"getPersonRequest">
<part name="parameters" element=
"getPerson"/>

</message> <message name=
"getPersonResponse">
<part name="parameters" element=
"getPersonResponse"/>

</message>

Fig. 3. WSDL description of the "getPerson" operation

the specification describes some successive calls of
different operations which belong to the same web
service. The specification is translated into the LTS
model and test cases are generated according to the
ioco implementation relation [Tre96]. In [BDTC05],
web services are automatically tested by using only
the WDSL description. Test cases are generated for
two perspectives: test data generation (analysis of
the message data types) and test operation generation
(operation dependency analysis). In [BFPT06], the
authors proposes to test the interoperability between
web services. They propose to augment the WSDL
description with a UML2.0 Protocol State Machine
(PSM) diagram which models the possible interactions
between the service and a client. Test cases are then
generated from the PSM. A framework, called the
"Audition framework", is proposed for executing these
test cases in [BP05]. The authors of [MX06] propose
a method to test automatically web service robustness.
From a WSDL description, the method use the Axis
2 framework to generate a class composed of methods
allowing to call any service operation. Then, test cases
are generated with tool Jcrasher, from the previous
class. Finally, the tool Junit is used to execute test
cases.

III. GENERAL DESCRIPTION AND MOTIVATIONS

The testing method in [BDTC05] already tests au-
tomatically web services from WSDL descriptions.
Without specification, a classical conformance testing
method, which constructs test cases from a specifica-
tion, cannot be used. As a consequence, the method in
[BDTC05] tests some web service properties. Our pro-
posal aims to test others properties which are essential

3

in web service development.
As in [BDTC05], we check if each web service

operation described in the WSDL file, exists, that is
if each can be called with the parameter types given
in the WSDL file and returns the good response types.
Then, we test the web service session management as
well as the exception management. This is a major
contribution of this paper.

• web service session management testing: sessions
are introduced with web services when different
operations are interrelated. During the session
time, for a single client, data are stored by the web
service. Usually, an operation is used to provide
data to the web service and another operation
is used to retrieve these data. We consider that
the two operation names have the form "set-
operation-name" and "get-operation-name. So,
this part checks that, during a session and after
giving some specific data to the web service with
"set-operation-name", these data are persistent in
the web service and can be retrieved with "get-
operation-name".

• exception management testing: this part tests if
exceptions are correctly controlled in web service
codes. As described in the WS-I basic profile,
when an exception is raised by an operation, a
SOAP fault should be returned to the client. De-
spite the recent efforts of the web service frame-
works, exceptions are not always correctly man-
aged. So, when an exception is raised (Database
connection error, thread creation error,...) the
client is not always warned. To express this issue,
consider the "divide" operation codes of figures
4, 5, 6. When, we wish to divide an integer by 0,
we observe different responses.
In the piece of code of figure 4, exceptions are not
managed correctly: when the exception is raised,
the web service simply returns the integer "1".
This result does not meant an error for the client.
The exception does not spread over the network
because no SOAP fault is constructed and sent.
So, the exception management is not correct.
In figure 5, there is no exception in the "divide"
operation. When a division by 0 occurs, the web
service behavior may differ according to the web
service framework used (Axis 1, Axis 2, JAXRPC
or JAXWS libraries). The web service may crash
without returning any result. This is the worst
situation: the client has no result and is not
warned. With other frameworks, the web service
is stopped but the web server returns a SOAP
fault composed of the "divide / 0" message and of
the cause "java.lang.ArithmeticException", which
corresponds to the raised exception in the server
side. In this case, the client receives a SOAP
fault, so the exception is detected by the client.
However, this is not thanks to the web service.
Usually, when exceptions are not managed, the

client may receive a SOAP fault composed of at
least two elements, a message which equals to
the raised exception message and a cause which
equals to the raised exception name. In the worst
case, it does not receive anything.
The web service code of figure 6 describes a good
exception management. When the exception is
raised in the web service, this one spreads until the
client thanks to the piece of code "throw new Re-
moteException("error divide"+x+" by "+y). This
one produces one SOAP fault, composed of the
message "error divide"+x+" by "+y and of the
cause java.rmi.RemoteException. Usually, when
exception are managed, the client receives a
SOAP fault which is constructed by the web ser-
vice. This one is composed of the raised exception
message and the cause java.rmi.RemoteException.
So, our testing method tries to raise exceptions
in a web service by calling its operations with
test cases composed of specific parameter values.
Then, the method checks whether SOAP faults,
constructed by the web service, are received.

Furthermore, to implement this method, we have
made our own testing framework which generates test
cases and executes them. Unlike [MX06], this one
is able to directly call web service operations and
to analyze SOAP responses. Indeed, the use of a
framework like Axis2 [tasf04] to call operations, adds a
layer which hides the receipt of messages like SOAP
faults. We prefer calling the operations directly. We
also use our own tool to generate test cases. The use of
test tools like Jcrasher [SC07] is a good solution to test
classical objects. But web services can be rather seen
as several objects inside of a SOAP environment. So,
we prefer using our own tool permitting to handle our
own parameter values for testing. We can also change
these values easily. This is not possible with Jcrasher.

Class Service {
public int divide (int x, int y) {
int result=1;
try {

result=x/y; return result;}
catch (Exception e) {

return result; }
}

Fig. 4. Example I

Class Service {
public int divide(int x, int y) {
return (x/y); }

}

Fig. 5. Example II

IV. AUTOMATIC WEB SERVICE TESTING

Many web services are currently proposed in UDDI
registries. For most of them, specifications or any

4

Class Service {
public int divide (int x, int y)

throws RemoteException {
try{

int result=x/y; return result;}
catch (Exception e) {

throw new RemoteException(
"error divide"+x+" by "+y); }

}

Fig. 6. Example III

information about their internal structures, are not
given.

Without specification, it is not possible to test the
complete web service conformance. Indeed, WSDL
descriptions give only information about operations,
parameter types and response types. These do not give
any information about the web service behavior. The
single solution would be to test with all the parameter
values of the operations. For the "integer" type, the
number of values is very large and for the "String"
type, it is infinite. So, we cannot test all these values.
Instead, for a web service WS, our method tests these
different web service properties:
• Existence of all service operations: for each

operation resp = op(param1, ..., paramm) ∈
OP (WS), we construct test cases to check
whether the implemented operation corresponds
to its description in the WSDL file. So, test
cases call the operation op with several values
(p1, ..., pm) ∈ P (op). If op returns a response r,
we may have two cases. On the one hand, r is a
correct response and equals to (r1, ..., rn) such as
the type of each value ri corresponds to respi

with resp = (resp1, ..., respn). On the other
hand, r is a SOAP fault where its own message is
not composed of "Illegal Argument". Otherwise,
op does not exist as described in the WSDL file.
An "Illegal Argument" message is given when an
IllegalArgument exception is raised in the web
service. This one means that the parameters does
not have the good types or that the number of the
given parameters is not correct.

• Exception management: for each operation
resp = op(param1, ..., paramm) ∈ OP (WS),
we generate test cases for trying to raise ex-
ceptions in op by calling it with specific values
(p1, ..., pm) ∈ P (op). Without specification, we
do not know the values which force the web
service to raise exceptions. But, we use unusual
values which should probably raise exceptions.
For example, for the "String" type we use "",
null, "*", "$". The Exception management test
is performed while the Existence of all service
operations test. If a SOAP fault is received we can
check the exception management. If a "classical"
response is received, we can check the operation
existence.
More precisely, after calling the operation, if no

response is received, the web service has crashed
without returning any SOAP fault. Otherwise,
a SOAP fault should be received, giving some
details about the exception (causes, values,...).
If each SOAP fault is composed of the "Re-
moteException" cause, the web service manages
exception correctly (see example 6). Otherwise, if
some SOAP faults are not composed of the "Re-
moteException" cause, some exceptions are not
well spread to the client. So, the exception man-
agement is faulty. Finally, if a correct response is
received (not a SOAP fault), we cannot conclude
anything about the exception management. But
we can check that the operation interface is as
described in the WSDL file.

• Session management: if WS has two operations
named by the expressions set − [opname] and
get − [opname], where [opname] is an opera-
tion name, we suppose that WS uses a session.
set − [opname] is called to give data to the
web service and get − [opname] is called to
retrieve it. We generate test cases to check if data
are persistent, by calling set − [opname] with a
parameter list (p1, ..., pn) ∈ P (set − [opname])
and by checking whether the retrieved data equals
to (p1, ..., pn). If the retrieved data are different,
the session management is faulty.

To test these properties, we need to set an hypoth-
esis on web services. We suppose that web service
operations return no empty responses. Indeed, without
response that is without observable data, we cannot
conclude whether the operation is faulty or correct. So,
if an operation does not return a response, we consider
that it is faulty. Note we don’t make any hypothesis on
the operation determinism.

Web service observable operation hypothesis: We
suppose that each web service operation, described in
WSDL files, returns a non empty response.

In the following, we present the test case generation
in section IV-A, our testing framework and the test
case execution in section IV-B.

A. Test case generation

Prior to describe the test case generation, we define
a test case by:

Definition IV.1 Let WS be a web service and
(resp1, ..., respn) = op(param1, ..., paramm) ∈
OP (WS) an operation of WS. A test case T is a
tree composed of nodes n0, ..., nm where n0 is the
root node and each end node is labeled by a local
verdict in {pass, inconclusive, fail}. The branch tree
are labeled either by op_call(v) or by op_return(r)
where
• v ∈ P (op), is a list of parameter values used to

invoke op,
• r = (m, soap_fault) is a SOAP fault composed

of the message m or r = (r1, ...rm) is a list of

5

responses where rj = (vj , tj) with vj a value and
tj the type of vj . We also denote ∗ any response
value. (∗, t) is a response whose the type is t.

For example, n0
getperson_call(”12345”)−−−−−−−−−−−−−−−→

n1
getperson_return((”∗”,String))−−−−−−−−−−−−−−−−−−−−→ pass is a test

case which invokes the getperson operation with the
parameter "12345". The response must be a String
value.

W S D L
d e s c r i p t i o n

ope ra t i on l i s t
p a r s i n g

V
se t o f spec i f i c

v a l u e s

T e s t c a s e
g e n e r a t i o n

T e s t c a s e s e t s
T 1 a n d T 2

Fig. 7. Test case generation

Test case generation is illustrated in figure 7. We
parse the web service WSDL file to list the available
operations. Then, we use an existing set of values
V to generate test cases. This set contains for each
type, an XML list of values that we use for calling
the operation. Theses values, permitted in the WSDL
description, have been chosen to:
• obtain responses, whose the types are described in

the WSDL file, for checking that the operations
are available.

• try to provoke exceptions in the web service in
order to check whether SOAP faults are returned.

We denote V (t) the set of specific values for the
type t which can be a simple type or a complex one.
figures 8, 9 show the specific values used for the
type "String" and for "tabular of "simple-type". For a
tabular composed of String elements, we use the empty
tabular, tabulars with empty elements and tabulars of
String constructed with V (String).

<type id="String">
<val value=null />
<val value="" />
<val value="$" />
<val value="*" />

<val value="hello" />
<val value=RANDOM" /> <!-- a random
String-->
<val value=RANDOM(8096)" />

</type>

Fig. 8. V(String)

<type id="tabular">
<val value=null /><!-- an empty
tabular-->
<val value= null null /><!--tabular
composed of two empty elts-->
<val value= simple-type />

</type>

Fig. 9. V(tabular)

For a web service WS, this method generates test
cases by the following steps:

1) We parse the WSDL description to obtain the list
of operations L = {op1, ...opl}.

2) For each operation (resp1, ..., respn) =
op(param1, ... paramm) ∈ L, we
construct, from the set V , the tuple
set V alue(op) = {(v1, ..., vm) ∈
V (param1) × ... × V (paramm)}. If the
parameter types are complex ones (tabular,
objet,...), we compose these complex types
with other ones to obtain the final values. We
also use an heuristic to estimate and eventually
to reduce the number of tests according the
number of tuples in V alue(op).

3) For each operation (resp1, ..., respn) =
op(param1, ... paramm) ∈ L, we construct
a first test case set T1 to test the operation
existence and the exception management.
T1 =

⋃

v∈V alue(op)

{n0.op_call(v).n1.op_return

(r1).pass, n0.op_call(v).n1.op_return(r2)
.pass}
where r1 = (∗, t) with t = (resp1, ..., respn),
r2 = (m, soap_fault)
with "IllegalAgumentException" not in the
SOAP fault message and cause composed
of "RemoteException".
Any other branch corresponds to a fail case and
is finished by "fail". The test case schema is
illustrated in figure 10.

4) For each (opi, opj) ∈ L2, if the name of opi

has the form get− [op−name] and opj has the
form get− [op− name], we construct a second
test case set T2 to test the session management.
T2 =

⋃

v∈V alue(op)

{n0.set− [op−name]_call(v)

.n1.set− [op− name]_return(r1).
inconclusive,
n0.set − [op − name]_call(v).n1.set −
[op − name]_return(r2).n2.get − [op −
name]_call().n3.get−[op−name]_return(r1).
inconclusive,
n0.set − [op − name]_call(v).n1.set − [op −
name]_return(r2).n2.get−[op−name]_call().
n3.get− [op− name]_return(r3).pass} where
• r1 = (m, soap_fault) with

"IllegalAgumentException" not in the SOAP
fault message and cause composed of
"RemoteException",

• r2 = (∗, (resp1, ..., respn)),
• r3 = (u, t) with u = v.

As previously, any other branch corresponds to
a fail case and is finished by "fail". The test case
schema of T2 is depicted in figure 11.

For more readability, we express the fail cases (the
test case discovers a failure) with a dashed line in
the schemas of figures 10 and 11. In T1, each tree
calls the operation with authorized parameters. If the
response is not a SOAP fault and if its type is the

6

one described in the WSDL file, the local verdict is
"pass". If the response is a SOAP fault whose the
message is not composed by "IllegalArgument" and
whose the cause expresses a "RemoteException" then
the operation manages exceptions correctly and the
local verdict is "pass". Otherwise, the local verdict is
"fail".

In the same way, each test case of T2 tries to
set a value v, with the set − [opname] operation.
Then, it calls the get − [opname] operation. If the
response value equals to v then the web service session
works perfectly. So, the the local verdict is "pass". If
after calling the operation set − [opname] or get −
[opname], the response is a SOAP fault where either
the message is not composed of "Illegal Argument" or
the cause is composed of "RemoteException", the web
service does not seem faulty but the session cannot
be tested. So the local verdict is "inconclusive". For
any other response, either these two operations are not
implemented as described in the WSDL file or the
session management is faulty.

o p _ c a l l (v)

o p _ r e t u r n (r)
r = S O A P f a u l t
m e s s a g e < >

I l l ega l A rg

c a u s e =
R e m o t e E x c e p t i o n

o p _ r e t u r n (r)
r= (resp , t)

o p _ r e t u r n (r)
r = S O A P f a u l t
m e s s a g e =
I l l ega l A rg
o r
c a u s e < >
R e m o t e E x c e p t i o n

o r r = e m p t y p a s s fa i lp a s s

Fig. 10. Test case schema of T1

s e t _ o p _ c a l l (v)

s e t _ o p _ r e t u r n (r)
r = S O A P f a u l t
m e s s a g e < > I l l e g a l A r g

c a u s e = R e m o t e E x c e p t i o n

s e t _ o p _
re tu rn (r)
r= (* , t)

fa i l i n c o n c l u s i v e

g e t _ o p _ c a l l (v)

g e t _ o p _
re tu rn (r)
r= (resp , t)
r e s p = v

fa i l i n c o n c l u s i v ep a s s

o t h e r w i s e

o t h e r w i s e

g e t _ o p _ r e t u r n (r)
r = S O A P f a u l t
m e s s a g e < > I l l e g a l A r g

c a u s e = R e m o t e E x c e p t i o n

Fig. 11. Test case schema of T2

Consider our web service example in figure 1.
For the operation Person getPerson(String), the test-
ing method handles the value set V (String”) and
generates the test cases illustrated in figure 12. For
the two operations String set-PersonName(String) and
Person get-PersonName(), the method generates a T2

test case set to test the session management. Test cases
are illustrated in figure 13.

Va lue v i n { nu l l , " " , " $ " , " * " , " he l l o " , r andom S t r i ng o f 10 ca rac te r s ,
r a n d o m S t r i n g o f 8 0 9 6 c a r a c t e r s }

g e t P e r s o n _ c a l l (v)

g e t P e r s o n _ r e t u r n (r)
r = S O A P f a u l t
m e s s a g e < >

I l l ega l A rg

c a u s e =
 R e m o t e E x c e p t i o n

g e t P e r s o n
_ re tu rn (r)
r = (r e s p ,
P e r s o n)

g e t P e r s o n _ r e t u r n (r)
r = S O A P f a u l t
m e s s a g e = I l l e g a l A r g
o r
c a u s e < >
R e m o t e E x c e p t i o n

o r r = e m p t y

p a s s fa i lp a s s

Fig. 12. Test cases generated from the "getPerson" operation

s e t - P e r s o n N a m e _ c a l l (V a l u e v)

s e t - P e r s o n N a m e _ r e t u r n (r)
S O A P f a u l t
m e s s a g e < > I l l e g a l A r g

c a u s e = R e m o t e E x c e p t i o n

s e t - P e r s o n
N a m e

re tu rn (r)
r= (* , s t r i ng)

fa i l i n c o n c l u s i v e

g e t - P e r s o n N a m e _ c a l l ()

g e t - P e r s o n
N a m e
re tu rn (r)
r= (resp , t)
r e s p = v

fa i l i n c o n c l u s i v ep a s s

o t h e r w i s e

o t h e r w i s e

Va lue v i n { nu l l , " " , " $ " , " * " , " he l l o " , r andom S t r i ng o f 10 ca rac te r s ,
r a n d o m S t r i n g o f 8 0 9 6 c a r a c t e r s }

g e t - P e r s o n N a m e _ r e t u r n (r)
S O A P f a u l t
m e s s a g e < > I l l e g a l A r g

c a u s e = R e m o t e E x c e p t i o n

Fig. 13. Test cases generated from the "set-PersonName" and "get-
PersonName" operations

B. Test case execution

Test cases are generated and executed with the
testing framework, illustrated in figure 14, which as
been implemented in an academic tool. The tester
corresponds to a web service which receives the URL

7

of the web service to test. It constructs test cases
as described previously, and then calls successively
the web service operations to execute test cases by
constructing or analyzing SOAP messages. Once test
cases are executed, it analyzes the obtained responses
and finally gives a test verdict. A more complete report
is also produced to show the responses obtained after
each call.

With this framework, we do not need of a specific
test platform where web services should be deployed.
The web service tester can call them on any accessible
server.

W S t e s t e r W e b
S e r v i c e

C l i e n t

r e q u e s t s

r e s p o n s e s

v e r d i c t
+

r e p o r t

w e b s e r v i c e U R L

Fig. 14. Test architecture

To give the final verdict, the tester executes each test
case by traversing the test case tree: it successively
calls an operation with parameters and waits for a
response while following the corresponding branch.
If a branch is completely executed, a local verdict is
obtained. Otherwise, the fail local verdict is given. For
a test case t, we denote the local verdict trace(t) ∈
{pass , fail , inconclusive}.

The final verdict is given by:

Definition IV.2 Let T be a test case set. The verdict of
the test by using T , over the set of values V , denoted
V erdict(T)/V equals
• pass, if for all t ∈ T, trace(t) = pass,
• inconclusive, if it exists t ∈ T such as trace(t) =

inconclusive, and it does not exists t′ ∈ T such
as trace(t′) = fail,

• fail, if it exists t ∈ T such as trace(t) = fail.

When an inconclusive verdict is given, an expert
would analyze the SOAP faults inside the report
given by the tester. He could determine the causes of
the raised exceptions and eventually could conclude
whether the web service is faulty. He could also modify
the V set and run another test.

Suppose that we wish to test the getPerson operation
with the test cases of figure 12. The values null and
"", which can be used to call getPerson according the
WSDL description, should raise an exception while
querying the database. So, a SOAP fault should be re-
ceived. By calling getPerson with the other values, we
should receive either a Person objet or a SOAP fault. If

no response is received, the web service has probably
crashed and is faulty. If the response is a SOAP
fault composed of the "Illegal Argument" message, the
parameter values are refused by the operation. In this
case, the web service interface does not correspond to
the WSDL file. This one is still faulty. If the SOAP
fault cause is not composed of the "RemoteException"
message, the exception management is incorrect.

V. CONCLUSION

Web service are often defined as objects which
can be accessed over a network like Internet, and
testing them does not seem difficult. However the WS-
I basic profile, which gathers the SOAP protocol and
the WSDL language, brings some new issues. For
example, the raised exceptions, which represent a part
of the web service behavior, should be observed by the
client with a SOAP fault. However, we have shown in
this paper that exceptions are not always observed from
the client when they are not correctly managed in the
web service. So, our testing method can be used to
test this exception management automatically, but also
the session management and the web service operation
existence.

We have successfully experimented this method
on some real web services (Amazon Associates web
service and some on webservicex.net) and we have
detected an incorrect exception management on one of
them (test cases have revealed that soap faults are not
constructed by the service itself). The use of the tool
is quite easy since only the WSDL description URL is
required for testing. However the experimentation has
revealed some drawbacks:

• the set R of parameters used for testing has been
improved to detect more failures. But, it would
be more interesting to propose dynamic analyzes,
as in software testing, to construct the more
appropriate parameter list for each web service,

• to avoid the test case explosion, the list of parame-
ters on R are chosen randomly. A better solution
would be to choose these parameters according
the operation description,

• except for the session management test, we have
supposed that the operations of the same web
service are independent. Indeed, testing depen-
dent operations without any specification is a big
challenge because we do not have the order of
the successive calls. A basic solution would be
to find the operation dependence graph, while
testing, by calling a list of successive operation
and by analyzing the observed response. We need
to investigate this possibility.

It could be also interesting to analyze the web
service paradigm to determine if other properties could
be tested. For example, the observability and the
controllability are two essential properties required to
improve the fault detection during the testing process.

8

A preliminary step could check automatically if web
services are observable and controllable.

We have also supposed that the messages sent and
received by web services are only SOAP messages.
So, we have only considered their interfaces provided
by the WSDL descriptions. This is true from the client
side point of view. However, services can be connected
to other servers, like database ones, or to other web
services (service composition). These other messages
are not currently considered in most of web service
testing methods and in this work. In the same way, the
web server internal messages are not considered too.
So, in future works, we intend to consider web services
not only as black boxes but rather as grey boxes from
which any kind of messages could be observed.

REFERENCES

[BDTC05] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong
Chen. Wsdl-based automatic test case generation
for web services testing. In SOSE ’05: Proceedings
of the IEEE International Workshop, pages 215–220,
Washington, DC, USA, 2005. IEEE Computer Society.

[BFPT06] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans.
Audition of web services for testing conformance to
open specified protocols. In R. Reussner, J. Stafford,
and C. Szyperski, editors, Architecting Systems with
Trustworthy Components, number 3938 in LNCS,
pages 1–25. Springer-Verlag, 2006.

[BP05] Antonia Bertolino and Andrea Polini. The audition
framework for testing web services interoperability. In
EUROMICRO-SEAA, pages 134–142, 2005.

[Con01] World Wide Web Consortium. Web services descrip-
tion language (wsdl). 2001.

[Con03] World Wide Web Consortium. Simple object access
protocol v1.2 (soap). June 2003.

[DYZ06] Wen-Li Dong, Hang Yu, and Yu-Bing Zhang. Testing
bpel-based web service composition using high-level
petri nets. edoc, 0:441–444, 2006.

[FTdV06] Lars Frantzen, Jan Tretmans, and René de Vries. To-
wards model-based testing of web services. In Antonia
Bertolino and Andrea Polini, editors, in Proceedings of
International Workshop on Web Services Modeling and
Testing (WS-MaTe2006), pages 67–82, Palermo, Sicily,
ITALY, June 9th 2006.

[GFTdlR06] José García-Fanjul, Javier Tuya, and Claudio de la
Riva. Generating test cases specifications for com-
positions of web services. In Antonia Bertolino and
Andrea Polini, editors, in Proceedings of International
Workshop on Web Services Modeling and Testing (WS-
MaTe2006), pages 83–94, Palermo, Sicily, ITALY,
June 9th 2006.

[MX06] Evan Martin and Tao Xie. Automated test generation
for access control policies. In Supplemental Proc. 17th
IEEE International Conference on Software Reliability
Engineering (ISSRE 2006), November 2006.

[org06] WS-I organization. Ws-i basic
profile. 2006. http://www.ws-
i.org/docs/charters/WSBasic_Profile_Charter2-1.pdf.

[OX04] Jeff Offutt and Wuzhi Xu. Generating test cases for
web services using data perturbation. In Software En-
gineering Notes, editor, ACMSIGSOFT, volume 29(5),
pages 1–10, 2004.

[SC07] Yannis Smaragdakis and Christoph Csallner. Combin-
ing static and dynamic reasoning for bug detection.
In Proc. International Conference on Tests And Proofs
(TAP), volume 4454 of LNCS, pages 1–16. Springer,
February 2007.

[Spe02] OASIS UDDI Specification. Universal
description, discovery and integration. 2002.
http://www.oasisopen.org/cover/uddi.html.

[tasf04] the apache software foundation. Axis. 2004.
http://ws..apache.org/axis/.

[TFM05] Abbas Tarhini, Hacène Fouchal, and Nashat Mansour.
A simple approach for testing web service based ap-
plications. In 5th International Workshop IICS, Paris,
France, pages 134–146, june 2005.

[Tid00] D. Tidwell. Web services, the web’s next revolution.
In IBM developerWorks, November 2000.

[Tre96] J. Tretmans. Test generation with input, outputs, and
repetitive quiescence. Software - Concepts and Tools,
17:103–120, 1996.

9

